首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1654篇
  免费   67篇
  2023年   7篇
  2022年   5篇
  2021年   45篇
  2020年   18篇
  2019年   25篇
  2018年   29篇
  2017年   20篇
  2016年   36篇
  2015年   80篇
  2014年   81篇
  2013年   126篇
  2012年   168篇
  2011年   178篇
  2010年   135篇
  2009年   109篇
  2008年   108篇
  2007年   89篇
  2006年   72篇
  2005年   68篇
  2004年   56篇
  2003年   53篇
  2002年   34篇
  2001年   18篇
  2000年   10篇
  1999年   17篇
  1998年   8篇
  1997年   6篇
  1996年   3篇
  1995年   7篇
  1994年   4篇
  1993年   4篇
  1992年   6篇
  1991年   9篇
  1990年   11篇
  1989年   12篇
  1988年   8篇
  1987年   9篇
  1986年   4篇
  1985年   5篇
  1984年   2篇
  1983年   6篇
  1981年   5篇
  1978年   3篇
  1976年   2篇
  1973年   3篇
  1969年   3篇
  1967年   2篇
  1961年   2篇
  1960年   2篇
  1959年   2篇
排序方式: 共有1721条查询结果,搜索用时 31 毫秒
1.
Nitrogen fertigation of greenhouse-grown cucumber   总被引:2,自引:0,他引:2  
Summary This greenhouse study investigated the response of trickle-irrigated cucumber (Cucumis sativa cv. ‘Petita’) to three N levels applied with every irrigation via the irrigation stream. The plants were grown in pots filled with 12 kg of soil. Water containing 5.8, 11.8, or 17.8 mmol N/l, and uniformly supplied with 2.0 and 3.9 mmol/l of P and K, respectively, was applied two to three times daily. In all treatments of 0.3 leaching fraction was allowed. The resulting total N applications were 15.7, 31., and 47.2 g N/plant. The total amount of water applied was 1851/plant. Total N and NO3-N, in lajinae and petioles, increased with increasing N level whereas P and K in generated decreased. Although different NO3/NH4 ratios in the treatments may have influeced the response to N, it could be concluded that the highest yield was obtained with 11.8 mmol N/1 due to increased number of fruit. In the root volume of this treatment the NO3-N concentration in the soil solution was aroun 7 mmol/1 for most of the growing season. The dry matter concentration of fruits was not affected by the N levels. It was concluded that 11.8 mmol N/1 applied with every irrigation via the irrigation stream is adequate to cover the needs of greenhous-grown cucumber for higher yield (9.42 kg/plant over a harvesting period of 93 days).  相似文献   
2.
The evolutionarily broad family nucleobase-cation symporter-2 (NCS2) encompasses transporters that are conserved in binding site architecture but diverse in substrate selectivity. Putative purine transporters of this family fall into one of two homology clusters: COG2233, represented by well studied xanthine and/or uric acid permeases, and COG2252, consisting of transporters for adenine, guanine, and/or hypoxanthine that remain unknown with respect to structure-function relationships. We analyzed the COG2252 genes of Escherichia coli K-12 with homology modeling, functional overexpression, and mutagenesis and showed that they encode high affinity permeases for the uptake of adenine (PurP and YicO) or guanine and hypoxanthine (YjcD and YgfQ). The two pairs of paralogs differ clearly in their substrate and ligand preferences. Of 25 putative inhibitors tested, PurP and YicO recognize with low micromolar affinity N6-benzoyladenine, 2,6-diaminopurine, and purine, whereas YjcD and YgfQ recognize 1-methylguanine, 8-azaguanine, 6-thioguanine, and 6-mercaptopurine and do not recognize any of the PurP ligands. Furthermore, the permeases PurP and YjcD were subjected to site-directed mutagenesis at highly conserved sites of transmembrane segments 1, 3, 8, 9, and 10, which have been studied also in COG2233 homologs. Residues irreplaceable for uptake activity or crucial for substrate selectivity were found at positions occupied by similar role amino acids in the Escherichia coli xanthine- and uric acid-transporting homologs (XanQ and UacT, respectively) and predicted to be at or around the binding site. Our results support the contention that the distantly related transporters of COG2233 and COG2252 use topologically similar side chain determinants to dictate their function and the distinct purine selectivity profiles.  相似文献   
3.
Recent studies have shown that cells expressing neuronal antigens can be derived from a bone marrow transplant. A new report lends support to and extends these previous results by presenting compelling morphological evidence for the generation and integration of highly differentiated bone marrow-derived neurons.  相似文献   
4.
The regulatory protein collybistin (CB) recruits the receptor-scaffolding protein gephyrin to mammalian inhibitory glycinergic and GABAergic postsynaptic membranes in nerve cells. CB is tethered to the membrane via phosphoinositides. We developed an in vitro assay based on solid-supported 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine membranes doped with different phosphoinositides on silicon/silicon dioxide substrates to quantify the binding of various CB2 constructs using reflectometric interference spectroscopy. Based on adsorption isotherms, we obtained dissociation constants and binding capacities of the membranes. Our results show that full-length CB2 harboring the N-terminal Src homology 3 (SH3) domain (CB2SH3+) adopts a closed and autoinhibited conformation that largely prevents membrane binding. This autoinhibition is relieved upon introduction of the W24A/E262A mutation, which conformationally “opens” CB2SH3+ and allows the pleckstrin homology domain to properly bind lipids depending on the phosphoinositide species with a preference for phosphatidylinositol 3-monophosphate and phosphatidylinositol 4-monophosphate. This type of membrane tethering under the control of the release of the SH3 domain of CB is essential for regulating gephyrin clustering.  相似文献   
5.
In purified rat Leydig cells, the methyl donor S-adenosyl-methionine (SAM), increases significantly in a dose dependent manner the [125I]hCG binding as well as the productions of cAMP and of testosterone; the competitive inhibitor of methylations S-adenosyl-homocysteine (SAH), has an opposite effect. Associated to oLH, SAM further enhances the cAMP synthesis while SAH inhibits significantly the adenylate cyclase activity. With regard to testosterone synthesis, SAM potentiates the stimulating roles of oLH and dbcAMP (27 and 38% increases, respectively) although SAH diminishes testosterone productions (48 and 35%, respectively under oLH and dbcAMP stimulations). Scatchard analysis has shown that SAM (1.4 mM) increases the number of LH/hCG binding sites on Leydig cells while SAH (1.4 mM) decreases it; LH/hCG Ka values are not modified neither by SAM nor by SAH. These data suggest that the in vitro regulation of steroidogenesis in purified rat Leydig cells may involve methylation processes (presumably phospholipids are the potential substrates of these reactions) which modulates the transmission of the hormonal signal through the membrane and affects the testosterone synthesis at a step beyond the adenylate cyclase.  相似文献   
6.
The relationship between growth, protein degradation, and cellular autophagy was tested in growing and in growth-inhibited 3T3 cell monolayers. For the biochemical evaluation of DNA and protein metabolism, growth-inhibited 3T3 cell monolayers with high cell density and growing 3T3 cell monolayers with low cell density were labeled simultaneously with [14C]thymidine and [3H]leucine. The evaluation of the DNA turnover and additional [3H]thymidine autoradiography showed that 24 to 5% of 3T3 cells continue to replicate even in the growth-inhibited state, where no accumulation of protein and DNA can be observed. Cell loss, therefore, has to be assumed to compensate for the ongoing cell proliferation. When the data of protein turnover were corrected for cell loss, it was found that the rate constant of protein synthesis in nongrowing monolayers was reduced to half the value found in growing monolayers. Simultaneously, the rate constant of protein degradation in nongrowing monolayers was increased to about 1.5-fold the value of growing monolayers. In parallel to the increased rate constant of protein degradation, the cytoplasmic volume fraction of early autophagic vacuoles (AVs) as determined by electron microscopic morphometry was found to be increased twofold in nongrowing 3T3 cell monolayers when compared with the volume fraction of early AVs in growing 3T3 cell monolayers. These data are in agreement with the assumption that cellular autophagy represents a major pathway of regulating protein degradation in 3T3 cells and that the regulation of autophagic protein degradation is of relevance for the transition from a growing to a nongrowing state.  相似文献   
7.
8.
In mature rat Leydig cells, the testosterone output (24 ng/10(6) Leydig cells/4hrs.) is increased 10 fold by LH; the addition of serum from either control or castrated or hypophysectomized rams inhibits (60%) the LH-stimulated testosterone production. Similarly, the incubation of immature rat Leydig cells with sera from hypophysectomized patients leads to a diminution (70 and 30% respectively) of both basal (0.98 ng) and LH stimulated (3.44 ng) testosterone biosynthesis. These data suggest the existence of an LH inhibitor (or inhibitors) in blood from ram and human; in addition, this substance is not only of testicular origin and is not an LH-related molecule.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号